Existence of quasi-invariance flow on loop space over a general non-compact manifold

Xin Chen

Shanghai Jiao Tong University

The 16th Workshop on Markov Processes and Related Topics July 12–16, 2021, Central China University Based on a joint work with Xue-Mei Li and Bo Wu

Outline

- Introduction
 - Riemannian path space
 - Riemannian loop space
 - Functional inequalities on $L_o(M)$

2 Main Results

Outline

- Introduction
 - Riemannian path space
 - Riemannian loop space
 - Functional inequalities on $L_o(M)$

2 Main Results

Riemannian path space

- M: a complete Riemannian manifold;
- $P_o(M) := \{ \gamma \in C([0,1]; M); \gamma(0) = o \};$
- μ_o : the Brownian measure on $P_o(M)$ (the probability measure on $P_o(M)$ under which the distribution of $\gamma(\cdot)$ is an M-valued Brownian motion;
- $U_{\cdot}(\gamma)$: stochastic horizontal lift along $\gamma(\cdot)$;

4/37

Riemannian path space

• Cameron-Martin space:

$$\mathbb{H} := \{ h \in C([0,1]; \mathbb{R}^d); h(0) = 0, \int_0^1 |\dot{h}(s)|^2 ds < \infty \};$$

Malliavian derivative

$$F(\gamma) = f(\gamma(t_1), \dots, \gamma(t_k)), \ 0 < t_1 < \dots < t_k < 1, f \in C_b^1(M^k);$$

$$D_h F(\gamma) = \sum_{i=1}^k \left\langle \nabla_i f(\gamma(t_1), \cdots \gamma(t_k)), U_{t_i}(\gamma) h(t_i) \right\rangle_{\gamma(t_i)}, \ h \in \mathbb{H};$$

 $DF(\gamma) \in \mathbb{H}$ such that

$$\langle DF(\gamma), h \rangle_{\mathbb{H}} = D_h F(\gamma), \ \ h \in \mathbb{H};$$

Riemannian path space

• O-U Dirichlet form (on $L^2(P_o(M); \mu)$)

$$\mathscr{E}(F,F) = \int_{P_o(M)} \|DF(\gamma)\|_{\mathbb{H}}^2 \mu_o(d\gamma), \ F \in \mathscr{D}(\mathscr{E});$$

- Motivation: Feynman path integral;
- Motivation: SPDE(P(M)-valued process), Quasi-regularity([Z.M. Ma and M. Röckner 92])

Existence of quasi-invariance flow

For every $h \in \mathbb{H}$, there exists a flow $\xi^{\varepsilon} : P_o(M) \to P_o(M)$, $\varepsilon \in \mathbb{R}$ such that the following statements hold.

- $\xi^0(\gamma) = \gamma$;
- There exists a μ_o -null set Λ_0 , such that for all $\gamma \in P_o(M)/\Lambda_0$, $\xi_s^{\varepsilon}(\gamma)$ is jointly C^1 in $\varepsilon \in \mathbb{R}$ and continuous in $s \in [0,1]$ and

$$\frac{\partial \xi_s^{\varepsilon}(\gamma)}{\partial \varepsilon} = U_s(\xi_{\cdot}^{\varepsilon})h(s), \ \varepsilon \in \mathbb{R}, \ s \in [0,1],$$

• For every $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$, it holds that for μ_o -a.s. $\gamma \in P_o(M)$,

$$\xi^{\varepsilon_1} \circ \xi^{\varepsilon_2}(\gamma) = \xi^{\varepsilon_1 + \varepsilon_2}(\gamma);$$

• For every $\varepsilon \in \mathbb{R}$, suppose that μ_o^{ε} is the law of $\xi_{\cdot}^{\varepsilon}$ on $P_o(M)$. Then μ_o^{ε} is absolutely continuous with respect to μ_o .

Existence of quasi-invariance flow

- *M* compact, $h \in C^1([0,1]; \mathbb{R}^d)$: [B. Driver 92]
- M compact, $h \in \mathbb{H}$: [E. Hsu 95]
- M complete and stochastically complete, $h \in \mathbb{H}$: [E. Hsu and C. Ouyang 09]

Motivation: To define the gradient for a general $F \in H^1$.

Outline

- Introduction
 - Riemannian path space
 - Riemannian loop space
 - Functional inequalities on $L_o(M)$

Main Results

Riemannian loop space

- $L_o(M) := \{ \gamma \in C([0,1]; M); \gamma(0) = \gamma(1) = o \};$
- ν_o : the Brownian bridge measure on $P_o(M)$

$$\mathbb{E}_{\nu_o}[F] = \mathbb{E}_{\mu_o}[F|\gamma(1) = o];$$

Finite dimensional expression

$$F(\gamma) = f(\gamma(t_1), \dots, \gamma(t_k)), \ 0 < t_1 < \dots < t_k < 1, f \in C_b^1(M^k);$$

$$\mathbb{E}_{\nu_o}[F] = \frac{\int_{M^k} f(x_1, \dots, x_k) p(t_1, o, x_1) \dots p(1 - t_k, x_k, o) dx_1 \dots dx_k}{p(1, o, o)};$$
(1)

Riemannian loop space

• $U.(\gamma)$: stochastic horizontal lift along $\gamma(\cdot)$

$$dU_t = \sum_{i=1}^n H_i(U_t) \circ dB_t^i + H_{\nabla \log p(1-t,\gamma(t),o)}(U_t)dt;$$

- $\mathbb{H}_0 := \{ h \in C([0,1]; \mathbb{R}^d); h(0) = h(1) = 0, \int_0^1 |\dot{h}(s)|^2 ds < \infty \};$
- Malliavian derivative

$$F(\gamma) = f(\gamma(t_1), \dots, \gamma(t_k)), \ 0 < t_1 < \dots < t_k < 1, \ f \in C_b^1(M^k);$$

$$D_{0,h}F(\gamma) = \sum_{i=1}^k \left\langle \nabla_i f(\gamma(t_1), \cdots \gamma(t_k)), U_{t_i}(\gamma) h(t_i) \right\rangle_{\gamma(t_i)}, \ \ h \in \mathbb{H}_0;$$

Riemannian loop space

• Malliavin gradient operator: $DF(\gamma) \in \mathbb{H}_0$ such that

$$\langle D_0 F(\gamma), h \rangle_{\mathbb{H}_0} = D_{0,h} F(\gamma), \ h \in \mathbb{H}_0;$$

• O-U Dirichlet form (on $L^2(L_o(M); \nu)$)

$$\mathscr{E}_0(F,F) = \int_{L_o(M)} \|D_0 F(\gamma)\|_{\mathbb{H}_0}^2 \nu_o(d\gamma), \ F \in \mathscr{D}(\mathscr{E}_0);$$

 Motivation: homology and cohomology, string theory and loop quantum gravity;

Outline

- Introduction
 - Riemannian path space
 - Riemannian loop space
 - Functional inequalities on $L_o(M)$

2 Main Results

- For functional inequalities for $(\mathscr{E}, \mathscr{D}(\mathscr{E}))$ (on $L^2(P_o(M); \mu_o)$), the crucial ingredients is the Ricci curvature bound on M;
- [L. Gross 91], [S. Aida 98] If M is not simply connected, then weak Poincaré inequality does not hold for $(\mathcal{E}_0, \mathcal{D}(\mathcal{E}_0))$.
- [A. Eberle 03] There exists a simply connected compact manifold M, such that Poincaré inequality does not hold for $(\mathcal{E}_0, \mathcal{D}(\mathcal{E}_0))$ on $L_o(M)$.
- [S. Aida 98] If M is compact and simply connected, then weak Poincaré inequality holds for $(\mathscr{E}_0, \mathscr{D}(\mathscr{E}_0))$, but any estimation of the rate function is unknown.

• [L. Gross 91], [F.Z. Gong, Z.M. Ma 98] If M is compact and simply connected, then there exists a $V \in \bigcap_{p=1}^{\infty} L^p(L_o(M); \nu_o)$

$$\mathbb{E}_{\nu_o}[F^2\log F^2] - \mathbb{E}_{\nu_o}[F^2]\log \mathbb{E}_{\nu_o}[F^2] \leqslant C\mathscr{E}_0(F,F) + \mathbb{E}_{\nu_o}[VF^2]$$

• [F.Z. Gong, M. Röckner, L.M. Wu 01], [S. Aida 01] If M is compact simply connected, then there exists a ground state measure $\nu_{o,\phi}$ such that

$$\mathbb{E}_{\nu_{o,\phi}}[F^2] - \mathbb{E}_{\nu_{o,\phi}}[F]^2 \leqslant C \int_{L_o(M)} \|D_0 F(\gamma)\|_{\mathbb{H}_0}^2 \nu_{o,\phi}(d\gamma);$$

• [S. Aida 99] If $M = H^n$, then

$$\begin{split} &\mathbb{E}_{\nu_o}[F^2 \log F^2] - \mathbb{E}_{\nu_o}[F^2] \log \mathbb{E}_{\nu_o}[F^2] \\ &\leqslant C \int_{L_o(H^n)} \rho(\gamma)^2 \|D_0 F(\gamma)\|_{\mathbb{H}_0}^2 \nu_o(d\gamma), \end{split}$$

where $\rho(\gamma) = \sup_{t \in [0,1]} d(o, \gamma(t))$.

• [C., X.M. Li, B. Wu 10], [S. Aida 17] If $M = H^n$, then

$$\mathbb{E}_{\nu_o}[F^2] - \mathbb{E}_{\nu_o}[F]^2 \leqslant C\mathscr{E}_0(F, F);$$

• [C., X.M. Li, B. Wu 11] If M is compact and Ric > 0, then for every $\delta > 0$

$$\mathbb{E}_{\nu_o}[F^2] - \mathbb{E}_{\nu_o}[F]^2 \leqslant Cr^{-\delta}\mathscr{E}_0(F, F) + r\|F\|_{\infty}^2.$$

• [A. Eberle 03, S. Aida 11] If M is compact, then there exists a $r_0 > 0$, such that for every $F \in \mathcal{D}(\mathcal{E}_0)$ with supp $F \subseteq \mathbb{B}_o(r_0)$,

$$\mathbb{E}_{\nu_o}[F^2 \log F^2] - \mathbb{E}_{\nu_o}[F^2] \log \mathbb{E}_{\nu_o}[F^2] \leqslant C \int_{L_o(M)} \|D_0 F(\gamma)\|_{\mathbb{H}_0}^2 \nu_o(d\gamma).$$

Here $\mathbb{B}_{o}(r_0) := \{ \gamma \in L_o(M); \sup_{t \in [0,1]} d(o, \gamma(t)) < r_0 \};$

Important ingredients

- Topological properties of based manifold *M*;
- M compact, asymptotic gradients estimates for heat kernel

$$\begin{aligned} |\nabla_x \log p(t, x, y)| &\leq C \left(\frac{d(x, y)}{t} + \frac{1}{\sqrt{t}} \right), \ x, y \in M, \ t \in (0, 1]. \\ \left| \nabla_x^2 \log p(t, x, y) \right| &\leq C \left(\frac{d^2(x, y)}{t^2} + \frac{1}{t} \right), \ x, y \in M, \ t \in (0, 1]. \end{aligned}$$

• [P. Malliavin, D.W. Stroock, 97] Suppose $y \in M$ and $K \subset Cut^c(y)$ is a compact set, then

$$\lim_{t\downarrow 0} \sup_{x\in K} \left| t \nabla_x^2 \log p(t,x,y) + \nabla_x^2 \left(\frac{d^2(x,y)}{2} \right) \right| = 0.$$

Existence of quasi-invariance flow

[B.Driver 94] Suppose M is compact, then for every $h \in \mathbb{H}_0 \cap C^1$, there exists a flow $\xi^{\varepsilon} : L_o(M) \to L_o(M)$, $\varepsilon \in \mathbb{R}$ such that the following statements hold.

• $\xi^0(\gamma) = \gamma$. There exists a ν_o -null set Λ_0 , such that for all $\gamma \in L_o(M)/\Lambda_0$, $\xi_s^{\varepsilon}(\gamma)$ is jointly C^1 in $\varepsilon \in \mathbb{R}$ and continuous in $s \in [0, 1]$ and

$$\frac{\partial \xi_s^{\varepsilon}(\gamma)}{\partial \varepsilon} = U_s(\xi_{\cdot}^{\varepsilon})h(s), \ \varepsilon \in \mathbb{R}, \ s \in [0,1];$$

• For every $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$, it holds that for ν_o -a.s. $\gamma \in L_o(M)$,

$$\xi^{\varepsilon_1} \circ \xi^{\varepsilon_2}(\gamma) = \xi^{\varepsilon_1 + \varepsilon_2}(\gamma);$$

• For every $\varepsilon \in \mathbb{R}$, suppose that ν_o^{ε} is the law of $\xi_{\cdot}^{\varepsilon}$ on $L_o(M)$. Then ν_o^{ε} is absolutely continuous with respect to ν_o

Some Questions

- What is the functional inequalities for $(\mathcal{E}_0, \mathcal{D}(\mathcal{E}_0))$ on $L_o(M)$ when M is non-compact M?
- Whether there exists a quasi-invarince flow on $L_o(M)$ when M is non-compact and $h \in \mathbb{H}_0$.

Asymptotic gradient estimates for heat kernel

Theorem (C., Li and Wu 21+)

Suppose M is a general complete Riemannian manifold.

(1) Suppose $x, y \in M$ and $x \notin Cut(y)$, then

$$\lim_{t\downarrow 0} t\nabla_x \log p(t, x, y) = -\nabla_x \left(\frac{d^2(x, y)}{2}\right).$$

Here the convergence is uniformly for $x \in K$ with K being a compact subset of $Cut^{c}(y)$.

(2) Suppose $K \subset M$ is a compact subset of M, then there exists a positive constant C(K), (which depends on K) such that

$$|\nabla_x \log p(t,x,y)| \leqslant C\left(\frac{d(x,y)}{t} + \frac{1}{\sqrt{t}}\right), \ x,y \in K, \ t \in (0,1].$$

Asymptotic gradient estimates for heat kernel

Theorem (C., Li and Wu 21+)

Suppose M is a general complete Riemannian manifold.

(1) Suppose $y \in M$ and $K \subset Cut^c(y)$ is a compact set, then

$$\lim_{t \downarrow 0} \sup_{x \in K} \left| t \nabla_x^2 \log p(t, x, y) + \nabla_x^2 \left(\frac{d^2(x, y)}{2} \right) \right| = 0.$$

(2) Suppose $K \subset M$ is a compact subset of M, then there exists a positive constant C(K), such that for all $x, y \in K$, $t \in (0, 1]$,

$$\left|\nabla_x^2 \log p(t, x, y)\right| \leqslant C\left(\frac{d^2(x, y)}{t^2} + \frac{1}{t}\right).$$

X. Chen, X.-M. Li, B. Wu: Logarithmic heat kernels: estimates without curvature restrictions, arXiv:2106.02746.

The existence of O-U Dirichlet form

Theorem (C., Li and Wu 21+)

Suppose M is complete and stochastically complete, there exists a (Brownian bridge) probability measure ν_o on $L_o(M)$ which posses the finite dimensional distribution (1).

Moreover, given a $\alpha \in (0, \frac{1}{2})$, there exists a ν_o -null set $\Delta \in L_o(M)$, such that for every $\gamma \notin \Delta$,

$$d(\gamma(s), \gamma(t)) \leqslant C(\gamma)(t-s)^{\alpha}, \ 0 \leqslant s \leqslant t \leqslant 1.$$

Theorem (C., Li and Wu 21+)

Suppose M is complete and stochastically complete. The quadratic form $(\mathcal{E}_0, \mathcal{F}C_b)$ is closable, and its closed extension $(\mathcal{E}_0, \mathcal{D}(\mathcal{E}_0))$ is a quasi-regular Dirichlet form.

Functional inequalities

Theorem (C., Li and Wu 21+)

If M is complete and stochastically complete, then there exists a $r_0 > 0$, such that for every $F \in \mathscr{D}(\mathscr{E}_0)$ with $\operatorname{supp} F \subseteq \mathbb{B}_o(r_0)$,

$$\mathbb{E}_{\nu_o}[F^2 \log F^2] - \mathbb{E}_{\nu_o}[F^2] \log \mathbb{E}_{\nu_o}[F^2] \leqslant C \int_{L_o(M)} \|D_0 F(\gamma)\|_{\mathbb{H}_0}^2 \nu_o(d\gamma).$$

Here $\mathbb{B}_o(r_0) := \{ \gamma \in L_o(M); \sup_{t \in [0,1]} d(o, \gamma(t)) < r_0 \};$

Theorem (C., Li and Wu 21+)

Suppose M is complete and stochastically complete, then there exists a positive function $V \in \bigcap_{p=1}^{\infty} L^p(\mathbb{B}_o(R); \nu_o)$ for all R > 0, such that

$$\operatorname{Ent}_{\nu_o}(F^2)\leqslant \operatorname{C\mathscr{E}}_0(F,F)+\mathbb{E}_{\nu_o}(\operatorname{VF}^2), \quad F\in \mathscr{D}_{loc}(\mathscr{E}_0),$$

where $\mathcal{D}_{loc}(\mathcal{E}_0) := \{ F \in \mathcal{D}(\mathcal{E}_0); \operatorname{supp}(F) \subseteq \mathbb{B}_o(R) \text{ for some } R > 0 \}.$

Theorem (C., Li and Wu 21+)

Suppose M is complete and stochastically complete, then for every $h \in \mathbb{H}_0$, there exists a flow $\xi^{\varepsilon}: L_o(M) \to L_o(M)$, $\varepsilon \in \mathbb{R}$ such that

• $\xi^0(\gamma) = \gamma$ and

$$\frac{\partial \xi_s^{\varepsilon}(\gamma)}{\partial \varepsilon} = U_s(\xi_{\cdot}^{\varepsilon})h(s), \ \varepsilon \in \mathbb{R}, \ s \in [0,1];$$

• For every $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$, it holds that for ν_o -a.s. $\gamma \in L_o(M)$,

$$\xi^{\varepsilon_1} \circ \xi^{\varepsilon_2}(\gamma) = \xi^{\varepsilon_1 + \varepsilon_2}(\gamma);$$

• Suppose that ν_o^{ε} is the law of $\xi_{\cdot}^{\varepsilon}$ on $L_o(M)$. Then

$$\frac{d\nu_o^{\varepsilon}}{d\nu_o} = \exp\left[\int_0^{\varepsilon} \Phi_h^1(\xi^{-\lambda}) d\lambda\right],$$

where

$$\Phi_h^t(\gamma) := \int_0^t \left\langle h'(s) + \frac{1}{2} Ric_{U_s(\gamma)} h(s), d\beta_s(\gamma) \right\rangle$$

Idea of the proof: cut-off vector fields

[A. Thalmaier 97], [A. Thalmaier, F.Y. Wang 98] Let $D_m \subseteq M$ is a increasing sequence of subset with $\bigcup_m D_m = M$, set $\tau_m := \tau_{D_m}$. For any $m \in \mathbb{N}$, there exists a random vector field $l_m : [0,1] \times C([0,1];M) \to [0,1]$, such that

- $l_m(t,\gamma) = \begin{cases} 1, & t \leq \tau_{m-1}(\gamma) \wedge 1 \\ 0, & t > \tau_m(\gamma) \end{cases}$;
- $l_m(t,\gamma)$ is \mathscr{F}_t^{γ} -adapted and $l_m(\cdot,\gamma)$ is absolutely continuous;
- For every positive integer $k \in \mathbb{Z}_+$, we have

$$\sup_{x\in D_m}\mathbb{E}_{\mu_x}\Big[\int_0^1|l_m'(s,\gamma)|^kds\Big]\leqslant C(m,k).$$

•

•

• For any *t* < 1,

$$\frac{d\nu_o^{\varepsilon}}{d\nu_o}\Big|_{\mathscr{F}_t} = \frac{p\left(1-t,\xi_t^{-\varepsilon},o\right)}{p(1-t,\gamma(t),o)} \exp\left[\int_0^{\varepsilon} \Phi_h^t\left(\xi^{-\lambda}\right) d\lambda\right]$$
$$=:= Z_{h,1}^{\varepsilon,t}(\gamma) Z_{h,2}^{\varepsilon,t}(\gamma)$$

$$\beta_s(\xi^{\lambda}) = \int_0^s U_r^{-1}(\xi^{\lambda}) \circ d\xi_r^{\lambda} = \int_0^s O_r^{h,\lambda} d\beta_r(\gamma) + \int_0^s A_r^{h,\lambda} dr,$$

where $O^{h,\lambda}$ is SO(n)-valued process and

$$\sup_{\gamma \in \mathbb{B}_o(r)} \left| A_s^{h,\varepsilon}(\gamma) \right| \leqslant c_1(\varepsilon,r) \left(|h'(s)| + |h(s)| \right) < \infty, \ \forall \ \varepsilon \in \mathbb{R}, \ r > 0.$$

$$\beta_s(\gamma) = b_s + \int_0^s U_r^{-1}(\gamma) \nabla \log p \left(1 - r, \gamma(r), o\right) dr.$$

• If *M* is compact, then we have

$$\left|\Phi_h^t\left(\xi^{-\lambda}\right)\right| \leqslant c_1 \int_0^t \frac{d(o,\gamma(s))}{1-s} ds,$$

and there exists a $\lambda > 0$,

$$\nu_{o,o}\left[\exp\left(\lambda\left(\int_0^1\frac{d(o,\gamma(s))}{1-s}ds\right)^2\right)\right]<\infty.$$

- When *M* is non-compact, the above estimates do not hold.
- Instead, we are going to prove (convergence in probability)

$$\lim_{t\uparrow 1} Z_{h,1}^{\varepsilon,t} = 1, \ \lim_{t\uparrow 1} Z_{h,2}^{\varepsilon,t} = Z_{h,2}^{\varepsilon,1}.$$

• For \mathcal{F}_t adapted F we have

$$\int_{L_o(M)} F d\nu_o^{\varepsilon} = \int_{L_o(M)} F Z_{h,1}^{\varepsilon,t} Z_{h,2}^{\varepsilon,t} d\nu_o.$$

• Taking $t \uparrow 1$, by Fatou's lemma we know for every non-negative F

$$\int_{L_o(M)} F d\nu_o^\varepsilon \geqslant \int_{L_o(M)} F Z_{h,2}^{\varepsilon,1} d\nu_o.$$

• Now we take $G(\gamma) = F(\xi^{\varepsilon}(\gamma)) Z_{h,2}^{\varepsilon,1}(\xi^{\varepsilon}(\gamma))$ obtain

$$\begin{split} &\int_{L_{o}(M)} F\left(\gamma\right) Z_{h,2}^{\varepsilon,1}\left(\gamma\right) \nu_{o}(d\gamma) \\ &= \int_{L_{o}(M)} G\left(\xi^{-\varepsilon}(\gamma)\right) \nu_{o}(d\gamma) \\ &= \int_{L_{o}(M)} G\left(\gamma\right) \nu_{o}^{-\varepsilon}(d\gamma) \geqslant \int_{L_{o}(M)} G(\gamma) Z_{h,2}^{-\varepsilon,1}(\gamma) \nu_{o}(d\gamma) \\ &= \int_{L_{o}(M)} F\left(\xi^{\varepsilon}(\gamma)\right) Z_{h,2}^{\varepsilon,1}\left(\xi^{\varepsilon}(\gamma)\right) Z_{h,2}^{-\varepsilon,1}(\gamma) \nu_{o}(d\gamma) \\ &= \int_{L_{o}(M)} F\left(\xi^{\varepsilon}(\gamma)\right) \nu_{o}(d\gamma) = \int_{L_{o}(M)} F(\gamma) \nu_{o}^{\varepsilon}(d\gamma). \end{split}$$

$$\begin{split} &Z_{h,2}^{\varepsilon,1}\left(\xi^{\varepsilon}(\gamma)\right)Z_{h,2}^{-\varepsilon,1}(\gamma)\\ &=\exp\left[\int_{0}^{\varepsilon}\Phi_{h}\left(\xi^{-\lambda}\circ\xi^{\varepsilon}(\gamma)\right)d\lambda+\int_{0}^{-\varepsilon}\Phi_{h}\left(\xi^{-\lambda}(\gamma)\right)d\lambda\right]\\ &=\exp\left[\int_{0}^{\varepsilon}\Phi_{h}\left(\xi^{-\lambda+\varepsilon}(\gamma)\right)d\lambda-\int_{0}^{\varepsilon}\Phi_{h}\left(\xi^{\lambda}(\gamma)\right)d\lambda\right]=1. \end{split}$$

The limit for $Z_{h,1}^{\varepsilon,t}$

• Comparison with the heat kernel on compact manifold

$$\frac{p\left(1-t,\xi_{t}^{-\varepsilon}(\gamma),o\right)}{p\left(1-t,\gamma(t),o\right)}1_{\{\tau_{m}(\gamma)>t\}} \leqslant \frac{p_{\tilde{M}_{m_{1}}}\left(1-t,\xi_{t}^{-\varepsilon}(\gamma),o\right)+e^{-\frac{L}{1-t}}}{p_{\tilde{M}_{m_{1}}}\left(1-t,\gamma(t),o\right)-e^{-\frac{L}{1-t}}}1_{\{\tau_{m}(\gamma)>t\}}$$

$$\frac{p\left(1-t,\xi_{t}^{-\varepsilon}(\gamma),o\right)}{p\left(1-t,\gamma(t),o\right)}1_{\{\tau_{m}(\gamma)>t\}} \geqslant \frac{p_{\tilde{M}_{m_{1}}}\left(1-t,\xi_{t}^{-\varepsilon}(\gamma),o\right)-e^{-\frac{L}{1-t}}}{p_{\tilde{M}_{m_{1}}}\left(1-t,\gamma(t),o\right)+e^{-\frac{L}{1-t}}}1_{\{\tau_{m}(\gamma)>t\}}$$

The limit for $Z_{h,2}^{\varepsilon,t}$

•

$$\begin{split} \Phi_h^t(\xi^\lambda) &= \int_0^t \left\langle \left(h'(s) + \frac{1}{2} \mathrm{Ric}_{U_s(\xi^\lambda)} h(s)\right), O_s^{h,\lambda} db_s + A_s^{h,\lambda} ds \right\rangle \\ &+ \int_0^t \left\langle h'(s), O_s^{h,\lambda} U_s^{-1}(\gamma) \nabla \log p \left(1 - s, \gamma(s), o\right) ds \right\rangle \\ &+ \int_0^t \left\langle \frac{1}{2} \mathrm{Ric}_{U_s(\xi^\lambda)} h(s), O_s^{h,\lambda} U_s^{-1}(\gamma) \nabla \log p \left(1 - s, \gamma(s), o\right) ds \right\rangle \\ &:= I_t^{1,\lambda} + I_t^{2,\lambda} + I_t^{3,\lambda}. \end{split}$$

• The difficult one: the limit for $I_t^{2,\lambda}$.

The limit for $Z_{h,2}^{\varepsilon,t}$

•

$$\begin{split} \Phi_h^t(\xi^\lambda) &= \int_0^t \left\langle \left(h'(s) + \frac{1}{2} \mathrm{Ric}_{U_s(\xi^\lambda)} h(s)\right), O_s^{h,\lambda} db_s + A_s^{h,\lambda} ds \right\rangle \\ &+ \int_0^t \left\langle h'(s), O_s^{h,\lambda} U_s^{-1}(\gamma) \nabla \log p \left(1 - s, \gamma(s), o\right) ds \right\rangle \\ &+ \int_0^t \left\langle \frac{1}{2} \mathrm{Ric}_{U_s(\xi^\lambda)} h(s), O_s^{h,\lambda} U_s^{-1}(\gamma) \nabla \log p \left(1 - s, \gamma(s), o\right) ds \right\rangle \\ &:= I_t^{1,\lambda} + I_t^{2,\lambda} + I_t^{3,\lambda}. \end{split}$$

• The difficult one: the limit for $I_t^{2,\lambda}$.

$$d\left(O_s^{h,\lambda}U_s^{-1}\nabla\log p\left(1-s,\gamma(s),o\right)\right)=L_s^{1,h,\lambda}db_s+L_s^{2,h,\lambda}ds,$$

where

$$\begin{split} \sup_{\gamma \in \mathbb{B}_{o}(r)} \left| L_{s}^{1,h,\lambda}(\gamma) \right| &\leq c_{3}(r) \left(\frac{d \left(\gamma(s), o \right)^{2}}{(1-s)^{2}} + \frac{1}{1-s} + \frac{|h(s)|d \left(\gamma(s), o \right)}{1-s} \right), \\ \sup_{\gamma \in \mathbb{B}_{o}(r)} \left| L_{s}^{2,h,\lambda}(\gamma) \right| &\leq c_{3}(r) \left(\frac{|h(s)|d \left(\gamma(s), o \right)^{2}}{(1-s)^{2}} \right. \\ &+ \frac{|h(s)|}{1-s} + \left(1 + |h'(s)||h(s)| \right) \cdot \left(\frac{d \left(\gamma(s), o \right)}{1-s} + \frac{1}{\sqrt{1-s}} \right) \right). \end{split}$$

$$\begin{split} I_t^{2,\lambda} &= \left\langle h(t), O_t^{h,\lambda} U_t^{-1}(\gamma) \nabla \log p \left(1 - t, \gamma(t), o\right) \right\rangle \\ &- \int_0^t \left\langle h(s), d\left(O_s^{h,\lambda} U_s^{-1} \nabla \log p \left(1 - s, \gamma(s), o\right)\right) \right\rangle \\ &= \left\langle h(t), O_t^{h,\lambda} U_t^{-1}(\gamma) \nabla \log p \left(1 - t, \gamma(t), o\right) \right\rangle \\ &- \int_0^t \left\langle h(s), L_s^{1,h,\lambda} db_s \right\rangle - \int_0^t \left\langle h(s), L_s^{2,h,\lambda} ds \right\rangle \\ &:= I_t^{21,\lambda} + I_t^{22,\lambda} + I_t^{23,\lambda}. \end{split}$$

$$\begin{split} &\lim_{t \uparrow 1} \nu_o \left[|I_t^{21,\lambda}| 1_{\{\tau_m > t\}} \right] \\ &\leqslant c_4 \lim_{t \uparrow 1} |h(t)| \nu_o \left[\left(\frac{d \left(\gamma(t), o \right)}{1 - t} + \frac{1}{\sqrt{1 - t}} \right) 1_{\{\gamma(t) \in B_o(m)\}} \right] \\ &\leqslant \lim_{t \uparrow 1} \frac{c_5 |h(t)|}{\sqrt{1 - t}} \leqslant c_5 \lim_{t \uparrow 1} \left(\int_t^1 |h'(s)|^2 ds \right)^{1/2} = 0. \end{split}$$

Thank you for your attention!

37 / 37